Geometry Scope and Sequence

Domain	$\begin{gathered} \hline \text { Quarter } 1 \\ \text { 44 Days } \\ \hline \end{gathered}$	Quarter 41 Days	Quarter 41 Days	Quarter 47 Days
	Content	Content	Content	Content
CONGRUENCE G.CO SIMILARITY, RIGHT TRIANGLES, AND TRIGONOMETRY G.SRT CIRCLES G.C. EXPRESSING GEOMETRIC PROPERTIES WITH EQUATIONS G.GPE GEOMETRIC MEASUREMENT AND DIMENSION G.GMD CONDITIONAL PROBABILITY AND THE RULES OF PROBABILITY S.CP.	G.CO. 1 Know precise definitions of ray, angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and arc length. G.CO. 2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not, e.g., translation versus horizontal stretch. G.CO. 3 Identify the symmetries of a figure, which are the rotations and reflections that carry it onto itself. a. Identify figures that have line symmetry; draw and use lines of symmetry to analyze properties of shapes. b. Identify figures that have rotational symmetry; determine the angle of rotation, and use rotational	G.SRT. 1 Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line and leaves a line passing through the center unchanged. b . The dilation of a line segment is longer or shorter in the ratio given by the scale factor. G.SRT. 2 Given two figures, use the definition of similarity in terms of similarity transformations G to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. G.SRT. 3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. G.SRT. 4 Prove and apply theorems about triangles. Theorems include but are not restricted to the following: a line parallel to one side of a triangle	G.C. 1 Prove that all circles are similar using transformational arguments. G.C. 2 Identify and describe relationships among angles, radii, chords, tangents, and arcs and use them to solve problems. Include the relationship between central, inscribed, and circumscribed angles and their intercepted arcs; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle. G.C. 3 Construct the inscribed and circumscribed circles of a triangle; prove and apply the property that opposite angles are supplementary for a quadrilateral inscribed in a circle. (+) G.C. 4 Construct a tangent line from a point outside a given circle to the circle.	G.GPE. 1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. (+) G.GPE. 2 Derive the equation of a parabola given a focus and directrix. (+) G.GPE. 4 Use coordinates to prove simple geometric theorems algebraically and to verify geometric relationships algebraically, including properties of special triangles, quadrilaterals, and circles. For example, determine if a figure defined by four given points in the coordinate plane is a rectangle; determine if a specific point lies on a given circle. (G, M2) G.GPE. 5 Justify the slope criteria for parallel and perpendicular lines, and use them to solve geometric problems, e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point. G.GPE. 6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio. G.GPE. 7 Use coordinates to compute perimeters

Find arc lengths and areas of sectors of circles.
G.C. 5 Find arc lengths and areas of sectors of circles. a. Apply similarity to relate the length of an arc intercepted by a central angle to the radius. Use the relationship to solve problems. b. Derive the formula for the area of a sector, and use it to solve problems.
G.GMD. 1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, and volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.
G.GMD. 3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. G.GMD. 4 Identify the shapes of two-dimensiona cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.
of polygons and areas of triangles and rectangles, e.g., using the distance formula.

Note: The following standards are not currently aligned to any of the 4 marking periods:
S.CP. 1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").
S.CP. 2 Understand that two events A and B are independent if and only if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. \star
S.CP. 3 Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.
S.CP. 4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified.

	diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals. G.CO. 12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. G.CO. 13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle G.SRT. 3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. Prove and apply theorems both formally and informally involving similarity using a variety of methods.			compound events and solve problems. $\star(\mathrm{G}, \mathrm{M} 2)$
Resources	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework Kahn Academy	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework Kahn Academy

WHCSD Scope and Sequence

	Kahn Academy	Kahn Academy	
Notes:	Mathematical Practices		
	1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 5. Model with mathematics. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning.		

